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This paper proposes an extension of CRONE control and design for unstable, multiple time-delay multivari-
able plants with right half-plane (RHP) zeros. The CRONE control approach developed for multivariable
square plants is based on third generation scalar CRONE methodology. The aim is to find a decoupling
and stabilizing controller for the open-loop transfer matrix. Fractional order transfer functions are used
to define all the components of the diagonal open-loop transfer matrix, So;. Optimization gives the best
fractional open-loop transfer matrix, g. Finally, frequency-domain system identification is used to find a
robust controller K=G~' 8. When the plant is inversed, time-delays and RHP poles or zeros can appear
on the denominator of the transfer matrix, G-!. To achieve a stable controller some time-delays, RHP
zeros and unstable poles must be included within the diagonal transfer function of the open-loop transfer
matrix. To assess the proposed design, the CRONE control approach is applied to a distillation example.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

There are many types of robustness, but our proposed approach
focuses on the stability degree [1-8]. The aim of the multivari-
able (MIMO) CRONE control approach is to robustify closed-loop
dynamic performance through robustness of the damping factor or
the resonant peaks of control, when plant parameters vary. Con-
trary to some methods, CRONE control and design does not deal
with robustness of the closed-loop bandwidth and thus, permits a
limiting of the control effort.

The CRONE control system design is based on the common
unity-feedback configuration (Fig. 1). The CRONE methodology uses
integro-differentiation with non-integer, or fractional, orders to
define the optimal controller or open-loop. Three generations of
CRONE control have been developed, successively extending the
application field.

The first generation based on differentiation with real fractional
orders proposes a controller with no variation on phase around
the open-loop gain crossover frequency wcg. This kind of controller
provides a robust phase margin for plants with a constant phase,
often found in the high frequencies. Such a controller can lead to
high levels of control input.

Second generation CRONE control proposes a fractional open-
loop transfer function with no variation on phase around the gain
crossover frequency wcg. The open-loop Nichols locus around wcg
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is a vertical straight line which ensures the robustness of phase
and modulus margins and of resonant peaks of complementary
sensitivity and sensitivity functions.

Finally, the third generation based on differentiation with com-
plex fractional orders must be used when the plant frequency
uncertainty domains are of various types (not only gain-like). The
vertical template is then replaced by a generalized template. It is
always described as a straight line in the Nichols chart, but of any
direction. The direction is provided by complex fractional order
integration, or by a curvilinear template defined by a set of gen-
eralized templates.

CRONE control design has been extended to stable and min-
imum phase square MIMO plants. Now, a totally multivariable
approachis proposed for uncertain and unstable square n x n MIMO
plants with right half-plane (RHP) zeros and time-delays. Section
2 presents differentiation with fractional orders. Sections 3 and
4 present CRONE control of multivariable plants with time-delay.
Simulation is presented in Section 5.

2. Fractional integro-differentiation

Cauchy’s integral formula is given by

1 (1)
ft)= i . ﬁdt,

(2.1)
with

- f : U — C a holomorphic function,
- Uasubset of C,
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Fig. 1. Common CRONE control system diagram.
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Sonin and Letnikov in [9] and [10] gave the first definition of differ-
entiation through the vth derivative of (2.1):

DVf(t) = ~— / L)]du (2.2)

27 Jo (v -0Vt

(2.2)is stretched out to non-integer orders by extending v! to arbi-
trary values (since v! =I"(v+1)).

This formalism is limited to negative real parts of the differ-
entiation order. The extension of integro-differentiation orders
to fractional complex sets (%te(ny) > 0) goes back to the nine-
teenth century and the work of Liouville and Riemann [11-13]. The
Riemann-Liouville fractional integral (%ie(n;) > 0) is expressed as

t
. f@)
() = (f) /t Ty dr (23)

7)

with

- f(t) e Lq(to, 1),

- t>to,

-theR,

- Tlf eC,

- I'(ny) the Gamma function extended to complex sets:

I'(np) = / e~*x—1dx. (2.4)
0

Eq. (2.3) can be interpreted as the convolution between f{t) and
the function h(t) = (¢! /T (ng)u(t). In fact:

1 /t @ 4
r(ng) J, (=0

Consequently, the Laplace transform of (2.5) gives:

L{yf©)} = L{nn) ef(t)}
L {”F(} oy = Loy 26)

The fractional order of the Riemann-Liouville fractional deriva-
tive (ie(ny) > 0) is

Iy f(t) = = h(t) ® f(t). (2.5)

np = | se(ny) | + {ote(ns)} +i Im(ny), (2.7)

where
- nf eC,

- me(nf)J the integer part of ny,
- {Ne(ng)} the fractional part of np, 0 <ng<1.

ng can also be written:

ne = [ se(ng)| +1-(1-

with

fe(ns))) +i Im(ny), (2.8)

- mf = L‘He(nf) +1,
f = —(1 - {9te(ny)}) + iIm(ny),
and thus
ng = my + n}. (2.9)

When %e(ns) < 0, the fractional integration becomes a —nyorder
fractional derivative:

I f(t) = D (), (2.10)
and reciprocally:
D f(t) = I f(t). (2.11)

Consequently, the Riemann-Liouville fractional derivative is
defined by the integer derivative of the fractional integration:

dms
D f(t) = (It0 f). (212)
From (2.9), n} can be written:
ng =my —ny, (213)
and (2.12) becomes:
1 dm ([ f(o)
n [ — JER—
D f(t) = T —m) * dt (/O m—ydr . (2.14)
This relation is defined for every f(t) such that
()= (t - to)" (¢ — to), (215)
or
f(t) = (t = to)" In(t — to)g(t — to), (2.16)
with
- AeC,
- fe(ng) > -1,

- @(t) analytic function of C for t>0.

The Laplace transform of (2.14) gives, with null initial condi-
tions:

LDy f(t)} = LIDFY (I~ f(£))} = s™ LGy~ £ (1)} (2.17)
Using (2.6), (2.17) becomes:
L{DYf(t)} = s™r s L{f(£)} = s L{F()}. (2.18)

These final definitions of generalized integro-differentiation
reveal that the fractional derivative or integral of a causal function
at given time takes into account the whole past of the function.
Also the relation obtained by the Laplace transform of (2.5) and
(2.14) extends the integer results. From 1975 on, Oustaloup et al.
has proposed various methodologies:

e for synthesizing band-limited differentiators whose orders are
real or complex and fractional [14];
e for designing real non-integer order robust controllers [4].
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3. CRONE control methodology for MIMO systems

The aim of this methodology is to find a diagonal open-loop
transfer matrix with n fractional order transfer elements [7,15].
This transfer matrix is parametered to satisfy the four following
objectives:

- perfect decoupling for the nominal plant,

- accuracy specifications at low frequencies,

- required nominal stability margins of the closed-loops
(behaviours around the required cut-off frequencies),

- specifications on the n control efforts at high frequencies.

After an optimization (minimizes a robustness cost) of the vari-
ous parameter of the open-loop transfer matrix, frequency-domain
system identification is used to obtain the fractional controller.

Our aim is to achieve output feedback decoupling. Thus, the
decoupling and diagonal open-loop transfer matrix will permit a
nominal closed-loop transfer matrix to be diagonal:

[ Bo,(s) O 0 7
0
Boi(s)
Bo(s) = : . (3.1)
. 0
L O 0 Bon(s)

The nominal sensitivity, complementary sensitivity, input sensi-
tivity and input-disturbance sensitivity function transfer matrices
are

So(s) = [+ Bo()I ", (32)
To(s) = [+ Bo()] " Bo(s), (33)
Suo(s) = K($)[I + Bo(s)] ™" = K(s)So(s), (3.4)
Sio(s) = [+ Bo(s)] " G(s) = To(s)K~1(s), (3.5)
(3.2) and (3.3) are written:

To(s) = diag[Toi($)| <i<n» (3.6)
and

So(s) = diag[Soi($)|1 <i<n» (3.7)
with

Toi(s) = %, (3.8)
and

Soi(s) = m (3.9)

The open-loop transfer functions By, (s) as defined in the follow-
ing section are used to satisfy the three other objectives.

3.1. Definition of the diagonal open-loop transfer function
elements

The open-loop transfer function behaviour can be described by
using the third generation CRONE control methodology presented
in this section. As mentioned above, the use of real fractional order
integration on frequency range [wa,wg| produces a straight line on
the Nichols chart which is called the generalized template (Fig. 2).

The generalized template can be defined by an integrator of
complex fractional order ny=a +ib whose real part determines its

i 4 80w

Ov <

2 -m/2

argAjw)

Fig. 2. Generalized template on the Nichols plane.

phase location at frequency wcg, that is —ie(ny)mr/2, and whose
imaginary part determines its angle to the vertical. It is described
by the limitation in the operational plane C; of the complex non-
integer integrator transfer function:

o= [(42)],

]

(3.10)
with

-S=0+jweC;,
- f=a+ibe(Ci,

also written as

Bo,(s) = (cosh (bg) ) sign(t) (%) ¢

This transfer function can be described as based on band-limited
complex non-integer integration:

Bo,(s) = CSE®) (”S/wh>

(3.11)

1 +s/a)1

ib —qsign(b)
1+ s/a)h
X .‘)l(?/i Cgi‘l +s/a)1 ’

(312)
with
C=ch [b (arctan (%Clg) — arctan (%:5))} , (3.13)
and
/
B <m>l 2' (3.14)

The corner frequencies are placed around the extreme frequen-
cies wa and wg such that

W] < WA < Weg < WB < Wh. (3.15)

For stable and minimum phase plants, the generalized template
is taken into account in the open-loop transfer function as follows:

Bo,(5) = Bi(5)Boy()Br, (), (3.16)
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with
). n;
B, (s) =G, (T + 1) , (3.17)
where order ny, fixes the accuracy of each closed-loop,
Ch,
Bn,(s) = (3.18)

((s/n) + 1™

and order ny,, permits the elements of the controller to be proper.
This third generation CRONE control open-loop transfer func-
tion has thus been defined using the gain crossover open-loop
frequency. However, this definition can also be made using the
closed-loop resonance frequency where w; replaces wcg.

3.2. Decoupling and optimized controller

Let Gg be the nominal plant transfer matrix such that Gy(s) =

[goij(s)]ijEN (go,-j(S) is a strictly proper transfer function) and:

Bo = GoK = diag[ o] = diag [ﬂ} , (3.19)
! di ieN

where

- N={1,...,n},

- Bo, = n;/d; the element of the ith column and row.

As mentioned above the aim of CRONE control for MIMO plants
is to find a decoupling controller for the nominal plant. Gy being
not diagonal, the problem is to find a decoupling and stabilizing
controller K [16]. This controller exists iff the following hypotheses
are verified:

Hy : [G(s)]’1exists, (3.20)

Hy : Z, [G(s)] N P4 [G(s)] = O, (3.21)

where Z,[G(s)] and P:+[G(s)] indicate the positive real part zero and
pole sets.
The controller K(s) is given by

adj(Go)

n,
K=GBy= diag [4} (3.22)
ARTeN dilicn
with
; i — (G
- adj(Go(s)) = [GY(S)]' = [G(s)],
- Gg(s) the cofactor of element go,-j(S).
- |Go| the determinant of Gg(s),
and thus
G!
kij 0 By Vi, jeN (3.23)
[Go|

For plants other than the nominal, the closed-loop transfer
matrices T(s) and S(s) are not diagonal anymore. Each diagonal ele-
ment Tj;(s) and S;(s) could be interpreted as a closed-loop transfer
function resulting from a scalar open-loop transfer function S;(s)
called equivalent open-loop transfer function [17]:

Ti(s) 1 - Sj(s)
Bi(s) = 1= Ta(s) ~  Su(s)

(3.24)

For each nominal open-loop B, various generalized templates
can tangent the same required magnitude-contour of the Nichols

chart or the same resonant peak My, . The optimal template is the
1
one that best minimizes the robustness cost function:

n
2
J= Z(Mpmaxi - MPmini) ’

(3.25)
i=1
where
M, = maxsup(T;;(jw)) = maxsup M (3.26)
Pmaxi =G ¢ o \1+Bi(w) )’ '
o Ny Biiiw)
Mpin, = m(;nsgp(Tn(Jw)) = minsup (1 " ,Bii(ja))> ' (3.27)

while respecting the following set of inequalities for w € R and
i, jeN:

inf [Tyj(je0) | = Ty (), (3.28)
sup |Ty(io)| < Ty, (@), (3.29)
sup |Sij(io)| < Sy, (@), (3.30)
sup |KSjj(i)| = KSyj, (), (3.31)
sup |SGU(jw)] < SGj, (o), (3.32)

where G is the nominal or perturbed plant.

As the uncertainties are taken into account by the least conser-
vative method, a non-linear optimization method must be used to
find the optimal values of the independent parameters of the frac-
tional open-loop, and consequently to find an optimal placement
of the equivalent open-loop frequency response S;;(jw).

The complex order is a tuning parameter that has the advantage
of replacing a whole set of parameters found in common rational
controllers.

4. CRONE control design for unstable MIMO plants with
RHP zeros and multiple time-delays

Let the nominal plant transfer matrix Gy be

[ 8o, (S) £0,,(5) 7

Go(s) = 80;(5) o (41)

L 80, ($) 80nn(8)

where

- 8o, (s) = hyj(s)e™t*,
- hjj(s) is a strictly proper time-delay free transfer function,
- Ljj is a positive constant.

Considering the general case where Gy has RHP zeros and time-
delays, the inverse of Gy is written:

o] o]
P(S)=Go ()= GerGyls)) = det(Gols))”

0 (4.2)
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where

det(Go(s)) = W (43)
each G’g can be written:

Xipmy () aa)

do,(s)
with
® 1n(s), mlﬁ(s), bo(s) and doﬁ(s) non-zero scalar polynomials of s,

e g <o <...
'(Soﬁ <81ﬁ<

We define the delay of the non-zero transfer function a(s) by
t(a(s)) which is the smallest time-delay of a(s). As a consequence,
t(a(s)) cannot be negative. It is easy to verify:

¢ t(araz)=7t(a;)+(az),
e (a1)=—1(a),

Va, a; and a, are non-zero transfer functions.(4.2) becomes:

pu(s)ern® P1n(s)eVn’®
-1 .
P(s) = Gy (s) = psers L |- (459)
pni(s)erms Pan(s)erms
where
* pij(s) = f(me, my, bo, o, 8y ), ke[1,q1]andle[1, g1,

* ¥ij =f(ao, do,)-

Consequently, the controller is written:
kij(s) = pij(s)ei* Bo,(s)- (4.6)

The relation above, implies that time-delay, RHP zeros and
unstable poles of p; must appear in 8y, to make the controller
achievable and stable. The open-loop transfer matrix will now be
defined. To treat this type of plant (unstable poles, RHP zeros and
time-delays) the method consisted in:

- find the time-delay of all components of the open-loop transfer
function fo,(s)

- -find the positive real part zeros and unstable poles of p;;, that
must appear on the open-loop transfer function matrix.

4.1. First step: time-delay
The following condition must be verified:
T(kj) =0 Vi, jeN, (4.7)
For this to be true, with (4.6):
7(Bo,(s)) = vy (4.8)
where

vij = T(IGol) — r(G]g) = o — doy;- (4.9)

The time-delay of the ith open-loop transfer function must sat-
isfy all the following relations:

7 (Bo,) = 7 (|Gol) - 7 (c§')
) > G, _ G2i

©(By) = = ([Go]) ¥ () o
T (Bo;) = 7 (|Go|) -7 (5)
Finally:

7(Bo,) = T(IGol) — 7; VieN, (411)
with

— min(t(Gh)) (4.12)

jeN

Relation (4.11) implies that the ith open-loop transfer function
must have a time-delay higher or equal to the difference between
the time-delay of |Gg| and, considering one column, the minimum
time-delay of [G)].

4.2. Step two: RHP poles and zeros

Let the transfer function a(s) be
Yo

2y 2
+ —

Py Pp

als) = (4.13)

where

- Z; is the positive real part zero set: Z; = {zeC*; a(z) = 0},
{pect;a'(p)=0},
- Z, is the negative real part zero set: Z, = {z eC;a(z)= 0},

- P, is the negative real part pole set: P, = {peC~; a!(p)=0}.

- P+ is the positive real part pole set: PJr

Let n,(a) be integer & such that llI‘l‘l( ))E exists and is non-zero.
s—z(5-2

So for a given z:
e a(s) has a n,(a) order zero at z if n,(a) >0,
a(s) has a nz(a) order pole at z if n,(a) <0,
e a(s) has neither pole nor zero if n,(a)=0.

It is easy to verify that:

* nz(araz)=nz(ar)+n:(az),
* na1)=-nz(a).

Va, a; and a, are non-zero transfer functions.
A transfer function is stable and minimum phase iff [18,19]:

n(a)=0 VzeCt. (4.14)
In our case we need:
Nz(kij)>0 Vi,jeN VzeCT, (4.15)

as, contrary to single-input/single-output systems, the controller of
MIMO systems can have RHP zeros. The stability of transfer KS and
TK-' depends only on the stability of K.

With (4.6), (4.15) becomes:

nz(kij(s)) = nz(p;(s)Bo,(s (4.16)
Let |O |9‘o and lc’o |§0/1 be the transfer functions that appear in the
factorized form of

ol =[G, e (417)
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" ; 8y,
6el-loel, .
[ 0 0 0 i .

(4.18)
with
D e
Oler by (s) ’ (4.19)
1w e
s, = — ,
! 0 (4.20)
With (4.17) and (4.18), (4.16) becomes:
oz,
Uz(kij)znz |G | ” |30 >
° (421)
Consequently,
Uz(BO,)Zr]:qGOL‘U )7772([6‘({’.L0ﬂ‘)‘ (4 22)

The ith open-loop transfer function must satisfy all the following
equations:

UZ(BO.)ZOZQGO| )
UZ(BO) n:\Gol,,

. (Bo,.) =7, qGoL,,n )— '72([ oLU ) (4.23)
Finally:

I]z(B(D,)Z”zqGUL‘ﬂ)_771(2) Vlej\r’ (4.24)

with

n,(e)= r]m]]v{’] ([Gél s, D ' (4.25)

Eq. (4.24) also implies that the ith open-loop transfer function
Bo,(s) must have, for each z, a (s—z) transfer function of order
nz(Bo;)- nz(Bo;) is higher or equal to the difference between the

|G - .
order of z in | Ole, and, considering one column, is the common

Ji
order of z in (G ]6”)1 . The sign of n,(Bo,) determines if the transfer
function is a RHP zero or an unstable pole of By, (s).
Finally, when all zeros and poles that must be integrated in the
ith open-loop transfer function are found, Bo,(s) is

Bo,(5) = Bz(5)Bp;(5)By,(5)Bo, ()8, (5, (4.26)

with

Bz = Co [Tk = 1Ny, (z;, — )" Por), (4.27)
) np;, (Bo,)

%—%wm%M—w{?+Dk , (428)
ik

where

® z;, is azsuch that nz(fo,) > 0,

* pj, is azsuch that n,(Bo;) < 0

* 1z, (Bo;) = nz(Po,), if zis a zero of fo,(s),

* 1p;, (Bo,) = —1z(Bo,). if zis a pole of fo,(s),
* Nz, is the number of RHP zeros of ,301,(5),

® Np, is the number of RHP poles of By,(s),
Np;

Uy = Z’?p,-k(ﬂo,»),
k=1
Nzi

© V= 1z (Bo)-
k=1

In addition, the controller must be proper and must permit the
rejection of low disturbance.
The controller is written:

K(s) = G (s)B(s). (4.29)
With ,3 a diagonal transfer matrix, consequently:
kij(s) ($)Bo; (s)- (4.30)
The controller is proper iff:
deg(k;i(s)) = 0. (4.31)
(deg(Np,(s)) — deg(Dpy(s))) + ((deg(nj(s)) — deg(di(s)))) = 0,  (4.32)
finally
deg(d(s)) + deg(Dy,(s)) = deg(Np,(s)) + deg(ni(s)) VjeN, (4.33)
with
o= 2
* fo(s) = (s)
As a consequence:
deg(d;(s)) — deg(ny(s)) > l}lal\;((deg(Np,.j(s)) — deg(Dp(s)))- (4.1)
At high frequencies:
deg(d;(s)) = ny,, (4.2)
deg(n;(s)) = ¥, (4.3)
finally
Ny, > W, + I}']ﬁ((de‘g(Npii(s)) - deg(Dpl_j(S))). (4.37)
At low frequencies, disturbances are rejected if:

N2-0(S(5)) + Nz—0(Go(s)) = 0. (4.4)
At low frequencies S(s) is equivalent to o, (s), consequently:
Nz=0(S(8)) = Nz=0(Bo,(s)) = mj, + ¥z, (45)

and

12=0(Go($)) = Nz=0(Ng;(s)) = Nz=0(Dgy(s))» (4.6)

with

gi(s) = g:g (4.7)
As a consequence:

n; + v, = nz:o(Dg,.j(s)) — nZZO(Ngﬁ(S)) VjeN. (4.42)
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Finally:
n, = %%(ﬁz:e(l)gij(s)) — Nz=0(Ngy(s))) — ¥, (4.43)
5. Application
Let Gg be the 2 x 2 transfer matrix:
05332 5 1.68 o2
Go= (325+1)%(2s+1) (28s+1)%(2s+1) 51)
~1.2585 g 47861 s

(43.65+1)(9s+1)° @8s11)(55+1)°

A modified Alatiqi distillation column plant [18]. Some control
design and process identification was applied to this process. Luy-
benin[18] proposed the so-called biggest log modulus tuning (BLT)
method, Tavakoli in [19] proposed a decentralised PI controller to
control the distillation column. In [20], Wang et al. proposed an
identification process that leads to the following model:

—0.5332 4958386 L7171 1a87915
67.7099s + 1 48.3651s + 1
Go = . (5.2)
—1.2585 g 45055 4.7861 497685
48.7805s + 1 49.7512s + 1

Plant (5.2) studied by Wang et al. in [20,21] illustrate the
method proposed in this paper. In [22], Tao proposes an analytical
decoupling control method based on the H, optimal performance
objective of internal model control (IMC) theory. This method is
compared to the proposed CRONE methodology. The CRONE meth-
ods provided better robust stability.

The control objectives are control the system and demonstrate
the control system robust stability of the method, time-delays and
time-constant uncertainties are +20% of nominal values.

5.1. Determination of time-delay

With no approximation the determinant of Gy(s) is
Ae—24.56065 | po—23.3296s

|Gol = C , (53)
where

A= —2.5519(48.7805s + 1)(48.3651s + 1), (5.4)
B = 2.1610(67.7099s + 1)(49.7512s + 1), (5.5)

C=(67.7099s+1)(49.75125+1)(48.78055+1)(48.3651s+1).  (5.6)

Consequently, the time-delay of the determinant of Gg(s) is
op=23.3296 and:

T(|Gol) = 23.3296. (5.7)

O For the first loop:

T(Gl) = 4.9768, (5.8)
7(G3!) = 8.4505, (5.9)
also

71 = min(t(GY!), T(G3)) = 4.9768, (5.10)
and with Eq. (4.11):

(Bo, ) = 23.3296 — 4.9768 = 18.3528. (5.11)

O For the second loop:

7(G?) = 14.8791, (5.12)
7(G3%) = 19.5838. (5.13)

Consequently:

71 = min(t(G{?), T(G3?)) = 14.8791, (5.14)
and by relation (4.11):
‘1:(,302) > 23.3296 — 14.8791 = 8.4505. (5.15)

5.2. Determination of the positive real part zeros and poles

First to determine the various poles or zeros of Gy ! that must

be appear on each nominal open-loop transfer function g, (s), the

6ol 1nalE ks, ,

zeros and poles of ' “le and % must be calculated. The Padé

approximation is used. The first order Padé approximation of a L;
time-delay is

1 (Ly/2)s

~Lyjs _ s
1 +(Lij/2)5

(5.16)

For all time-delays the approximation has been calculated. A
Matlab function shows that the dominant zero of the determinant

of Co e is z=0.0129:

n. QGOL*U J =1.

2=0.0129 (5.17)

The plant has no zeros and poles in the right half-plane. Conse-
quently:

2 -

] oo

- ([ng L ): 0 (5.18)
Also

@)= _min br.loy']s, Jn.les L, )-o. 519

and

)= min brlo2), Jnlol, )=o. (520)
Finally by Eq. (4.24):

n2((Bo g Nz=0.0120 =1-0>1, (5.21)

and

12((Bo; )y, Mlz=0.0120 =1 -0 = 1. (5.22)

Consequently, the two transfer functions of the nominal open-
loop transfer function matrix contain a RHP zero at z=0.0129.
Finally:

Bo, = Cz, B, (5)s — 21 )%6_18.352%] (s), (5.23)
and
Bo, = Cz, B, (5)(s — Zz)g—;e‘s'“”“ﬂhz(s), (5.24)

where z; =z, =0.0129.
Then ny, dq, np, d3, Cz; and C;, are optimized.
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Fig. 3. (-) Nominal and (-) reparametered frequency responses of fractional complementary sensitivity.

5.3. Specifications and optimization results - a smaller as possible settling time,
- a first overshoot less than 10%.
5.3.1. Specifications
For all the possible parametric states, the control must satisfy Eq. (4.43) and first specification imposes n;>1. The sec-
the following performance specification: ond specification imposes finite gain to be smaller as possible,
for the non-diagonal transfer function of the complemen-
tary sensitivity function. The last specification will be satisfied

- a zero steady-state error for the two outputs, by a nominal resonant peak equal to 10~3 for the two
- a perfect decoupling for the two loops, loops.

B11 s B22

Magnitude (dB)

e

-350 -300

-200 -150 -100 -50 I -350 -300 -250 -200 -150 -100 -50
Phase (°)

-250

Fig. 4. (-) Nominal and (-) reparametered fractional open-loop frequency responses.



422 D.N. Gruel et al. / Chemical Engineering Journal 146 (2009) 414-427

B11 0dB i B22 0dB _
s 1-1dB
)
=
Q
=
=]
R=
E
= -3dB
Y -6dB
-10
i -15
\4-12dB
-20
H i ¢ f | P I H B
-350 -300 -250 -200 -150 -100 -350 -300 -250 -200 -150 -100 -50
Phase (°)

Fig. 5. (-) Nominal and (-) reparametered rational open-loops using the first controller design.

The inputs of the CRONE control optimization software are: For the first loop, the initial values are:

- the various RHP zeros and unstable poles of S, (s), wr=0.0042rad/s,
- the time-delay for each control loop, - wp=0.4rad/s,
- an initialisation of the various elements of the non-integer open- w;=0.002rad/s,
loop transfer function: wr, wp, @j, |1Bo,(i®)llw=wr, 1 and ny. 11Bo, (j@)llw=cwr = 0dB,

T11 T2

10
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-40 |---

60 |-

-100
3 -2 - ] " 3 E g
10 10 10 10 10 10 10 10 10 10

Frequency (rad/s)

Fig. 6. (-) Nominal and (-) reparametered complementary sensitivity functions for the rational controller using the first controller design.
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Fig. 7. (-) Nominal and (-) reparametered complementary sensitivity functions for the rational controller using the second controller design.

n=1,

ny, =2 for the controller be proper (4.37).

And for the second loop, the initial values are:

wr=0.0041rad/s,
wp=0.4rad/s,
wp=0.01rad/s,

| Bo, Ge),_,,, =0-5dB,

Fig. 8.

B11

Magnitude (dB)

15§

5,0.25dB,

0dB_

-350 -300

-250 -200 -150 -100

-n=1,
- ny =2 for the controller to be proper (4.37).

Consequently, the open-loop transfer function matrix to opti-
mize is

(5.25)

008 _
30

25

il g fp Al !
-350 -300 -250 -200 -150 -100 -50

Phase (°)

(-) Nominal and (-) reparametered rational open-loop transfer functions using the second controller design.
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- for the first loop: K; =2.0160, a; =1.1087, b; = —-0.3710, g; =2 and
C; =2.3258.

- for the second loop: K, =0.4122, a, =1.3668, b, =—0.6808, g, =4
and C, =1.0807.

For the ideal fractional open-loop, all specifications have now
been verified. In fact Fig. 3 shows that magnitudes, for all diagonal
elements (nominal or reparametered) are around zero. However,
for non-diagonal elements there is a distinction between nomi-
nal and reparametered elements. The magnitude for the nominal
plant is smaller (around —300dB) but for the reparametered
plants it is around —25dB. Also Fig. 4 shows that the frequency
responses of the ideal fractional open-loop overlap the 0dB
M-contour.

5.4. The controller

First, for find the controller frequency response, frequency-
domain and K = 661ﬂ0 are used. To the frequency response of the
fractional controller, poles and zeros are used to synthesize a ratio-
nal controller.

The expression of the controller is

Gh(s)
10},.(c) — 0 -
kii(s) Co(S)] Bo,(s) Vi,jeN, (5.34)
and the expression of the inverse of the determinant is
1 = ¢ (5.35)

|G| ~ Ae—24.5606s | Bg—23.3296s °

To synthesize the rational controller two methods can be used.

5.4.1. Controller design: first method

This first method consists in not used a priori known elements of
the transfer G, I when frequency-domain system identification is
used to find the rational controller. The parameters of the reduced-
order transfer function with a predefined structure are tuned to fit
the fractional frequency response of the ideal controller. The ratio-
nal integer model on which the reduced-order transfer function is
based, is given by

A(s)

kij(s) = Bs)’
where A(s) and B(s) are polynomials of specified integer degrees
n, and n,. An advantage of this design method is that whatever
the complexity of the control problem, around six satisfactory
values of n,; and ny, are easily found. In our case this simplicity
is detrimental to performance. This controller synthesis method
gives non-optimal results. Even if the equivalent open-loop over-
laps the 0dB M-contour (Fig. 6), the second specification is not
respected. When comparing the ideal closed-loop (Fig. 3) and the
rational closed-loop (Fig. 5) a perfect decoupling for two loops is
not achieved. In fact the non-diagonal elements show, for the nom-
inal plant, a maximum attenuation of 20 dB for the first loop and
around 10dB for the second.

(5.36)

5.4.2. Controller design: second method

In the second design an a priori known is used when the final
and rational controller is searched. In this case many known ele-
ments are introduced in the initial and predefined structure of the
transfer functions. In (5.33) and (5.34), it can be seen that the G](;C
elements for each element of K are not necessary for approxima-
tion.

In our case this method gives optimal results. The ideal fractional
closed-loop (Fig. 3) or open-loop (Fig. 4) is match with the rational
closed-loop (Fig. 7) or open-loop (Fig. 8).

Table 1
Controller transfer matrix coefficients.

kn k12

a; b; a; b;
1 1.570 0 1.570 0
2 0.748 0.522 0.835 0.458
3 0.042 0.167 0.835 0.271
4 0.021 0.095 0.498 0.167
5 0.020 0.023 0.020 0.118
6 0.015 0.021 0.020 0.032
7 0.015 0.021

k21 k2o

a; b; a; b;
1 1.570 0 1.570 0
2 0.748 0.522 0.835 0.458
3 0.042 0.167 0.835 0.271
4 0.021 0.095 0.498 0.167
5 0.020 0.023 0.021 0.118
6 0.015 0.021 0.020 0.032
7 0.020 0.021

The second design gives the best results. Each element of the
controller transfer matrix is based on the model defined by (5.35)
(Table 1).

5.5. Assessment of the controller

A simulation is now carried out to assess the controller.

Step signals are applied, respectively, at reference inputsatt=0s
and t=1500s, and at input disturbances at t=4000s and t=2500s.
Their magnitudes are, respectively, 1 and 0.1. Fig. 9 presents the
nominal plant inputs and outputs. Fig. 10 presents the perturbed
and nominal plant inputs and outputs. As the outputs always fol-
low the reference inputs without poor damping (robust stability
degree), the controller can be said robust. It is also efficient as
it always rejects the disturbance effect. Fig. 11 and 12 show that
the controller designed using the CRONE approach (black line) is
more decoupling than the controller designed using T. Liu approach
(dotted line).

6. Conclusion

The CRONE methodology has been extended to unstable mul-
tivariable plant with RHP zeros and multiple time-delays. To treat
this kind of plant some elements of G or its inverse must be intro-
duced in each open-loop, this article gives a whole method to find
it.

A chemical engineering process is used to improve the proposed
approach. The extended CRONE control approach has been used to
design a controller to ensure robust closed-loop stability degree,
decoupling and disturbances rejections. The simulation exerted
show that CRONE control approach successfully states the robust
stability of the closed-loops, the robust decoupling and the robust
disturbances rejection.

A crone approach to unstable and non-square multivariable
plants with multivariable time-delay, and RHP zeros, is being inves-
tigated.
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