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a b s t r a c t

This paper proposes an extension of CRONE control and design for unstable, multiple time-delay multivari-
able plants with right half-plane (RHP) zeros. The CRONE control approach developed for multivariable
square plants is based on third generation scalar CRONE methodology. The aim is to find a decoupling
and stabilizing controller for the open-loop transfer matrix. Fractional order transfer functions are used
to define all the components of the diagonal open-loop transfer matrix, ˇ0i. Optimization gives the best
fractional open-loop transfer matrix, ˇ. Finally, frequency-domain system identification is used to find a
robust controller K = G−1ˇ. When the plant is inversed, time-delays and RHP poles or zeros can appear
Multivariable
CRONE
C
D

on the denominator of the transfer matrix, G−1. To achieve a stable controller some time-delays, RHP
zeros and unstable poles must be included within the diagonal transfer function of the open-loop transfer

osed
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. Introduction

There are many types of robustness, but our proposed approach
ocuses on the stability degree [1–8]. The aim of the multivari-
ble (MIMO) CRONE control approach is to robustify closed-loop
ynamic performance through robustness of the damping factor or
he resonant peaks of control, when plant parameters vary. Con-
rary to some methods, CRONE control and design does not deal
ith robustness of the closed-loop bandwidth and thus, permits a

imiting of the control effort.
The CRONE control system design is based on the common

nity-feedback configuration (Fig. 1). The CRONE methodology uses
ntegro-differentiation with non-integer, or fractional, orders to
efine the optimal controller or open-loop. Three generations of
RONE control have been developed, successively extending the
pplication field.

The first generation based on differentiation with real fractional
rders proposes a controller with no variation on phase around
he open-loop gain crossover frequency ωcg. This kind of controller
rovides a robust phase margin for plants with a constant phase,
ften found in the high frequencies. Such a controller can lead to

igh levels of control input.

Second generation CRONE control proposes a fractional open-
oop transfer function with no variation on phase around the gain
rossover frequency ωcg. The open-loop Nichols locus around ωcg
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design, the CRONE control approach is applied to a distillation example.
© 2008 Elsevier B.V. All rights reserved.

s a vertical straight line which ensures the robustness of phase
nd modulus margins and of resonant peaks of complementary
ensitivity and sensitivity functions.

Finally, the third generation based on differentiation with com-
lex fractional orders must be used when the plant frequency
ncertainty domains are of various types (not only gain-like). The
ertical template is then replaced by a generalized template. It is
lways described as a straight line in the Nichols chart, but of any
irection. The direction is provided by complex fractional order

ntegration, or by a curvilinear template defined by a set of gen-
ralized templates.

CRONE control design has been extended to stable and min-
mum phase square MIMO plants. Now, a totally multivariable
pproach is proposed for uncertain and unstable square n × n MIMO
lants with right half-plane (RHP) zeros and time-delays. Section
presents differentiation with fractional orders. Sections 3 and
present CRONE control of multivariable plants with time-delay.

imulation is presented in Section 5.

. Fractional integro-differentiation

Cauchy’s integral formula is given by

(t) = 1
2�i

∫
C

f (�)
� − t

d�, (2.1)
ith

f : U → C a holomorphic function,
U a subset of C,

http://www.sciencedirect.com/science/journal/13858947
http://www.elsevier.com/locate/cej
mailto:dominique.nelson@laps.ims-bordeaux.fr
dx.doi.org/10.1016/j.cej.2008.09.041
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has proposed various methodologies:
Fig. 1. Common CRONE control system diagram.

C border circle of D,
D = {�/|� − t| ≤ ε}⊂U,

onin and Letnikov in [9] and [10] gave the first definition of differ-
ntiation through the �th derivative of (2.1):

�f (t) = �!
2�i

∫
C

f (�)

(� − t)�+1
d�. (2.2)

2.2) is stretched out to non-integer orders by extending �! to arbi-
rary values (since �! = �(� + 1)).

This formalism is limited to negative real parts of the differ-
ntiation order. The extension of integro-differentiation orders
o fractional complex sets (�e(nf ) > 0) goes back to the nine-
eenth century and the work of Liouville and Riemann [11–13]. The
iemann–Liouville fractional integral (�e(nf ) > 0) is expressed as

nf
t0

f (t) = 1
� (nf )

∫ t

t0

f (�)
(t − �)1−nf

d�, (2.3)

ith

f (t) ∈ L1(t0, t),
t > t0,
t0 ∈R,
nf ∈C,
�(nf) the Gamma function extended to complex sets:

(nf ) =
∫ ∞

0

e−xxnf −1 dx. (2.4)

Eq. (2.3) can be interpreted as the convolution between f(t) and
he function h(t) = (tnf −1/� (nf ))u(t). In fact:

nf
0 f (t) = 1

� (nf )

∫ t

0

f (�)
(t − �)1−nf

d� = h(t) ⊗ f (t). (2.5)

Consequently, the Laplace transform of (2.5) gives:{
Inf
0 f (t)

}
= L

{
h(t) ⊗ f (t)

}
= L

{
tnf −1u(t)

� (nf )

}
L
{

f (t)
}

= 1
sn

L
{

f (t)
}

. (2.6)

The fractional order of the Riemann–Liouville fractional deriva-
ive (�e(nf ) > 0) is

f =
⌊
�e(nf )

⌋
+
{

�e(nf )
}

+ i Im(nf ), (2.7)

here
nf ∈C,⌊
�e(nf )

⌋
the integer part of nf,

{�e(nf )} the fractional part of nf, 0 ≤ nf < 1.

•

•
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f can also be written:

f =
⌊
�e(nf )

⌋
+ 1 − (1 − {�e(nf )}) + i Im(nf ), (2.8)

ith

mf =
⌊
�e(nf )

⌋
+ 1,

n′
f

= −(1 − {�e(nf )}) + i Im(nf ),

nd thus

f = mf + n′
f . (2.9)

When �e(nf ) < 0, the fractional integration becomes a −nf order
ractional derivative:

nf
t0

f (t) = D−nf
t0

f (t), (2.10)

nd reciprocally:

nf
t0

f (t) = I−nf
t0

f (t). (2.11)

Consequently, the Riemann–Liouville fractional derivative is
efined by the integer derivative of the fractional integration:

nf
t0

f (t) = dmf

dt
(I

−n′
f

t0
f (t)). (2.12)

From (2.9), n′
f

can be written:

′
f = mf − nf , (2.13)

nd (2.12) becomes:

nf
t0

f (t) = 1
� (mf − nf )

× dmf

dt

(∫ t

0

f (�)
(t − �)1−(mf −nf ) d�

)
. (2.14)

This relation is defined for every f(t) such that

(t) = (t − t0)	ϕ(t − t0), (2.15)

r

(t) = (t − t0)	 ln(t − t0)ϕ(t − t0), (2.16)

ith

	 ∈C,
�e(nf ) > −1,
ϕ(t) analytic function of C for t > 0.

The Laplace transform of (2.14) gives, with null initial condi-
ions:

{Dnf
0 f (t)} = L{Dmf

0 (Imf −nf
0 f (t))} = smf L{Imf −nf

0 f (t)}. (2.17)

Using (2.6), (2.17) becomes:

{Dnf
0 f (t)} = smf snf −mf L{f (t)} = snf L{f (t)}. (2.18)

These final definitions of generalized integro-differentiation
eveal that the fractional derivative or integral of a causal function
t given time takes into account the whole past of the function.
lso the relation obtained by the Laplace transform of (2.5) and

2.14) extends the integer results. From 1975 on, Oustaloup et al.
for synthesizing band-limited differentiators whose orders are
real or complex and fractional [14];
for designing real non-integer order robust controllers [4].



4 ineering Journal 146 (2009) 414–427

3

t
T
o

-
-
-

-

o
s

d
n

ˇ

t
a

S

T

S

S

(

T

a

S

w

T

a

S

i

3
e

u
i
i
t

c

p
i
b
i

ˇ

w

-
-

a

ˇ

c

ˇ

w

C

a

C

c

ω

16 D.N. Gruel et al. / Chemical Eng

. CRONE control methodology for MIMO systems

The aim of this methodology is to find a diagonal open-loop
ransfer matrix with n fractional order transfer elements [7,15].
his transfer matrix is parametered to satisfy the four following
bjectives:

perfect decoupling for the nominal plant,
accuracy specifications at low frequencies,
required nominal stability margins of the closed-loops
(behaviours around the required cut-off frequencies),
specifications on the n control efforts at high frequencies.

After an optimization (minimizes a robustness cost) of the vari-
us parameter of the open-loop transfer matrix, frequency-domain
ystem identification is used to obtain the fractional controller.

Our aim is to achieve output feedback decoupling. Thus, the
ecoupling and diagonal open-loop transfer matrix will permit a
ominal closed-loop transfer matrix to be diagonal:

0(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ˇ01 (s) 0 · · · 0

0
. . .

ˇ0i(s) · · ·
...

. . . 0
0 · · · 0 ˇ0n(s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.1)

The nominal sensitivity, complementary sensitivity, input sensi-
ivity and input-disturbance sensitivity function transfer matrices
re

0(s) = [I + ˇ0(s)]−1, (3.2)

0(s) = [I + ˇ0(s)]−1ˇ0(s), (3.3)

U0(s) = K(s)[I + ˇ0(s)]−1 = K(s)S0(s), (3.4)

i0(s) = [I + ˇ0(s)]−1G(s) = T0(s)K−1(s), (3.5)

3.2) and (3.3) are written:

0(s) = diag[T0i(s)]1≤i≤n, (3.6)

nd

0(s) = diag[S0i(s)]1≤i≤n, (3.7)

ith

0i(s) = ˇ0i
(s)

1 + ˇ0i
(s)

, (3.8)

nd

0i(s) = 1
(1 + ˇ0i

(s))
. (3.9)

The open-loop transfer functions ˇ0i
(s) as defined in the follow-

ng section are used to satisfy the three other objectives.

.1. Definition of the diagonal open-loop transfer function
lements

The open-loop transfer function behaviour can be described by
sing the third generation CRONE control methodology presented
n this section. As mentioned above, the use of real fractional order
ntegration on frequency range [ωA,ωB] produces a straight line on
he Nichols chart which is called the generalized template (Fig. 2).

The generalized template can be defined by an integrator of
omplex fractional order nf = a + ib whose real part determines its

i

ˇ

Fig. 2. Generalized template on the Nichols plane.

hase location at frequency ωcg, that is −�e(nf )�/2, and whose
maginary part determines its angle to the vertical. It is described
y the limitation in the operational plane Cj of the complex non-
nteger integrator transfer function:

0i
(s) =

[(
ωcg

s

)nf
]

Cj

, (3.10)

ith

s = � + jω ∈Cj,
nf = a + ib ∈Ci,

lso written as

0i
(s) =

(
cosh

(
b

�

2

))sign(b)(ωcg

s

)a

×
(

�e/i

((
ωcg

s

)ib
))−sign(b)

. (3.11)

This transfer function can be described as based on band-limited
omplex non-integer integration:

0i
(s) = Csign(b)

(
1 + s/ωh

1 + s/ωl

)a

×
(

�e/i

{(
Cg

1 + s/ωh

1 + s/ωl

)ib
})−q sign(b)

, (3.12)

ith

= ch
[

b
(

arctan
(

ωcg

ωl

)
− arctan

(
ωcg

ωh

))]
, (3.13)

nd

g =
(

1 + (ωcg/ωl)
2

1 + (ωcg/ωh)2

)1/2

. (3.14)

The corner frequencies are placed around the extreme frequen-
ies ωA and ωB such that

l < ωA < ωcg < ωB < ωh. (3.15)
For stable and minimum phase plants, the generalized template
s taken into account in the open-loop transfer function as follows:

0i
(s) = ˇli

(s)ˇ0i
(s)ˇhi

(s), (3.16)
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ith

li (s) = Cli

(ωli
s

+ 1
)nli

, (3.17)

here order nli fixes the accuracy of each closed-loop,

hi
(s) = Chi

((s/ωhi
) + 1)nhi

, (3.18)

nd order nhi
permits the elements of the controller to be proper.

This third generation CRONE control open-loop transfer func-
ion has thus been defined using the gain crossover open-loop
requency. However, this definition can also be made using the
losed-loop resonance frequency where ωr replaces ωcg.

.2. Decoupling and optimized controller

Let G0 be the nominal plant transfer matrix such that G0(s) =
g0ij

(s)]
i,j ∈ N

(g0ij
(s) is a strictly proper transfer function) and:

0 = G0K = diag[ˇ0i
] = diag

[
ni

di

]
i ∈ N

, (3.19)

here

N={1, . . ., n},
ˇ0i

= ni/di the element of the ith column and row.

As mentioned above the aim of CRONE control for MIMO plants
s to find a decoupling controller for the nominal plant. G0 being
ot diagonal, the problem is to find a decoupling and stabilizing
ontroller K [16]. This controller exists iff the following hypotheses
re verified:

1 : [G(s)]−1exists, (3.20)

2 : Z+ [G(s)] ∩ P+ [G(s)] = 0, (3.21)

here Z+[G(s)] and P+[G(s)] indicate the positive real part zero and
ole sets.

The controller K(s) is given by

= G−1
0 ˇ0 = adj(G0)∣∣G0

∣∣ diag
[

ni

di

]
i ∈ N

(3.22)

ith

adj(G0(s)) = [Gij
0(s)]

T = [Gji
0(s)],

Gij
0(s) the cofactor of element g0ij

(s),
|G0| the determinant of G0(s),

nd thus

ij = Gji
0∣∣G0

∣∣ˇ0i
∀ i, j ∈ N. (3.23)

For plants other than the nominal, the closed-loop transfer
atrices T(s) and S(s) are not diagonal anymore. Each diagonal ele-
ent Tii(s) and Sii(s) could be interpreted as a closed-loop transfer

unction resulting from a scalar open-loop transfer function ˇii(s)
alled equivalent open-loop transfer function [17]:
ii(s) = Tii(s)
1 − Tii(s)

= 1 − Sii(s)
Sii(s)

. (3.24)

For each nominal open-loop ˇ0i
various generalized templates

an tangent the same required magnitude-contour of the Nichols

d

P
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hart or the same resonant peak Mp0i
. The optimal template is the

ne that best minimizes the robustness cost function:

=
n∑

i=1

(Mpmaxi
− Mpmini

)2, (3.25)

here

pmaxi
= max

G
sup

ω
(Tii(jω)) = max

G
sup

ω

(
ˇii(jω)

1 + ˇii(jω)

)
, (3.26)

pmini
= min

G
sup

ω
(Tii(jω)) = min

G
sup

ω

(
ˇii(jω)

1 + ˇii(jω)

)
, (3.27)

hile respecting the following set of inequalities for ω ∈R and
, j ∈ N:

nf
G

∣∣Tij(jω)
∣∣ ≥ Tijl

(ω), (3.28)

up
G

∣∣Tij(jω)
∣∣ ≤ Tiju (ω), (3.29)

up
G

∣∣Sij(jω)
∣∣ ≤ Siju (ω), (3.30)

up
G

∣∣KSij(jω)
∣∣ ≤ KSiju (ω), (3.31)

up
G

∣∣SGij(jω)
∣∣ ≤ SGiju (ω), (3.32)

here G is the nominal or perturbed plant.
As the uncertainties are taken into account by the least conser-

ative method, a non-linear optimization method must be used to
nd the optimal values of the independent parameters of the frac-
ional open-loop, and consequently to find an optimal placement
f the equivalent open-loop frequency response ˇii(jω).

The complex order is a tuning parameter that has the advantage
f replacing a whole set of parameters found in common rational
ontrollers.

. CRONE control design for unstable MIMO plants with
HP zeros and multiple time-delays

Let the nominal plant transfer matrix G0 be

0(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g011 (s) · · · g01n
(s)

. . .

g0ij
(s)

...
...

. . .
g0n1 (s) · · · g0nn (s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (4.1)

here

g0ij
(s) = hij(s)e−Lijs,

hij(s) is a strictly proper time-delay free transfer function,
Lij is a positive constant.

Considering the general case where G0 has RHP zeros and time-

elays, the inverse of G0 is written:

(s) = G−1
0 (s) =

[
Gij

0(s)
]T

det(G0(s))
=

[
Gji

0(s)
]

det(G0(s))
, (4.2)
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here

et(G0(s)) =
∑q1

k=0nk(s)e−˛ks

b0(s)
, (4.3)

ach Gji
0 can be written:∑q2ji

l=0mlji
(s)e−ılji

s

d0ji
(s)

, (4.4)

ith

nk(s), mlji
(s), b0(s) and d0ji

(s) non-zero scalar polynomials of s,
˛0 < ˛1 < . . . < ˛q1 ,
ı0ji

< ı1ji
< . . . < ıq2ji

.

We define the delay of the non-zero transfer function a(s) by
(a(s)) which is the smallest time-delay of a(s). As a consequence,
(a(s)) cannot be negative. It is easy to verify:

�(a1a2) = �(a1) + �(a2),
�(a−1) = −�(a),

a, a1 and a2 are non-zero transfer functions.(4.2) becomes:

(s) = G−1
0 (s) =

⎡
⎣ p11(s)e�11s · · · p1n(s)e�lns

... pij(s)e�ijs
...

pn1(s)e�n1s · · · pnn(s)e�nns

⎤
⎦ , (4.5)

here

pij(s) = f (nk, mlji
, b0, d0ji

, ılji
, ˛k), k ∈ [1, q1] and l ∈ [1, q2ji

],
�ij = f (˛0, ı0ji

).

Consequently, the controller is written:

ij(s) = pij(s)e�ijsˇ0i
(s). (4.6)

The relation above, implies that time-delay, RHP zeros and
nstable poles of pij must appear in ˇ0i

to make the controller
chievable and stable. The open-loop transfer matrix will now be
efined. To treat this type of plant (unstable poles, RHP zeros and
ime-delays) the method consisted in:

find the time-delay of all components of the open-loop transfer
function ˇ0i

(s);
-find the positive real part zeros and unstable poles of pij, that
must appear on the open-loop transfer function matrix.

.1. First step: time-delay

The following condition must be verified:

(kij) ≥ 0 ∀ i, j ∈ N, (4.7)

For this to be true, with (4.6):
(ˇ0i
(s)) ≥ �ij, (4.8)

here

ij = �(|G0|) − �(Gji
0) = ˛0 − ı0ji

. (4.9)

f

g Journal 146 (2009) 414–427

The time-delay of the ith open-loop transfer function must sat-
sfy all the following relations:

�
(

ˇ0i

)
≥ �

(∣∣G0

∣∣)− �
(

G1i
0

)
�
(

�0i

)
≥ �

(∣∣G0

∣∣)− �
(

G2i
0

)
...
�
(

�0i

)
≥ �

(∣∣G0

∣∣)− �
(

Gni
0

)
(4.10)

inally:

(ˇ0i
) ≥ �(|G0|) − �i ∀ i ∈ N, (4.11)

ith

i = min
j ∈ N

(�(Gji
0)) (4.12)

Relation (4.11) implies that the ith open-loop transfer function
ust have a time-delay higher or equal to the difference between

he time-delay of |G0| and, considering one column, the minimum
ime-delay of [Gji

0].

.2. Step two: RHP poles and zeros

Let the transfer function a(s) be

(s) = Z+
p Z−

p

P+
p P−

p
, (4.13)

here

Z+
p is the positive real part zero set: Z+

p =
{

z ∈ C+; a(z) = 0
}

,

P+
p is the positive real part pole set: P+

p =
{

p ∈ C+; a−1(p) = 0
}

,

Z−
p is the negative real part zero set: Z−

p =
{

z ∈ C−; a(z) = 0
}

,

P−
p is the negative real part pole set: P−

p =
{

p ∈ C−; a−1(p) = 0
}

.

Let 
z(a) be integer � such that lim
s→z

a(s)

(s−z)� exists and is non-zero.

So for a given z:

a(s) has a 
z(a) order zero at z if 
z(a) > 0,
a(s) has a 
z(a) order pole at z if 
z(a) < 0,
a(s) has neither pole nor zero if 
z(a) = 0.

It is easy to verify that:


z(a1a2) = 
z(a1) + 
z(a2),

z(a−1) = −
z(a).

a, a1 and a2 are non-zero transfer functions.
A transfer function is stable and minimum phase iff [18,19]:

z(a) = 0 ∀ z ∈C+. (4.14)

In our case we need:

z(kij) ≥ 0 ∀ i, j ∈ N ∀ z ∈C+, (4.15)

s, contrary to single-input/single-output systems, the controller of
IMO systems can have RHP zeros. The stability of transfer KS and

K−1 depends only on the stability of K.
With (4.6), (4.15) becomes:

z(kij(s)) ≥ 
z(pij(s)ˇ0i
(s)), (4.16)
Let and be the transfer functions that appear in the
actorized form of

(4.17)
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(4.18)

ith

(4.19)

(4.20)

With (4.17) and (4.18), (4.16) becomes:

(4.21)

Consequently,

(4.22)

The ith open-loop transfer function must satisfy all the following
quations:

(4.23)

Finally:

(4.24)

ith

(4.25)

Eq. (4.24) also implies that the ith open-loop transfer function
0i

(s) must have, for each z, a (s − z) transfer function of order
z(ˇ0i

). 
z(ˇ0i
) is higher or equal to the difference between the

rder of z in and, considering one column, is the common

rder of z in . The sign of 
z(ˇ0i
) determines if the transfer

unction is a RHP zero or an unstable pole of ˇ0i
(s).

Finally, when all zeros and poles that must be integrated in the
th open-loop transfer function are found, ˇ0i

(s) is

0i
(s) = ˇzi

(s)ˇpi
(s)ˇli

(s)ˇ0i
(s)ˇhi

(s), (4.26)

ith

zi
= Czi

˘k = 1Nzi
(zik

− s)
zik
(ˇ0i

), (4.27)
pi
= Cpi

(e−j�)
�pi ˘k = 1Npi

(
pik

+ s

pik
− s

)
pik
(ˇ0i

)

, (4.28)

here

g

n
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zik
is a z such that 
z(ˇ0i

) > 0,
pik

is a z such that 
z(ˇ0i
) < 0,


zik
(ˇ0i

) = 
z(ˇ0i
), if z is a zero of ˇ0i

(s),


pik
(ˇ0i

) = −
z(ˇ0i
), if z is a pole of ˇ0i

(s),

Nzi
is the number of RHP zeros of ˇ0i

(s),
Npi

is the number of RHP poles of ˇ0i
(s),

�pi
=

Npi∑
k=1


pik
(ˇ0i

),

�zi
=

Nzi∑
k=1


zik
(ˇ0i

).

In addition, the controller must be proper and must permit the
ejection of low disturbance.

The controller is written:

(s) = G−1
0 (s)ˇ(s). (4.29)

With ˇ a diagonal transfer matrix, consequently:

ij(s) = Pij(s)ˇ0i
(s). (4.30)

The controller is proper iff:

eg(kij(s)) ≥ 0. (4.31)

deg(Npij(s)) − deg(Dpij(s))) + ((deg(ni(s)) − deg(di(s)))) ≥ 0, (4.32)

nally

eg(di(s)) + deg(Dpij(s)) ≥ deg(Npij(s)) + deg(ni(s)) ∀ j ∈ N, (4.33)

ith

pij(s) =
Npij(s)

Dpij(s)
,

ˇ0i
(s) = ni(s)

di(s) .

As a consequence:

eg(di(s)) − deg(ni(s)) ≥ max
j ∈ N

(deg(Npij(s)) − deg(Dpij(s))). (4.1)

At high frequencies:

eg(di(s)) = nhi
, (4.2)

eg(ni(s)) = �zi
, (4.3)

nally

hi
≥ �zi

+ max
j ∈ N

(deg(Npij(s)) − deg(Dpij(s))). (4.37)

At low frequencies, disturbances are rejected if:

z=0(S(s)) + 
z=0(G0(s)) ≥ 0. (4.4)

At low frequencies S(s) is equivalent to ˇ0i
(s), consequently:

z=0(S(s)) ≈ 
z=0(ˇ0i
(s)) = nli

+ �zi
, (4.5)

nd

z=0(G0(s)) = 
z=0(Ngij(s)) − 
z=0(Dgij(s)), (4.6)

ith

Ngij(s)

ij(s) =

Dgij(s)
. (4.7)

As a consequence:

lj
+ �zi

≥ nz=0(Dgij(s)) − nz=0(Ngij(s)) ∀ j ∈ N. (4.42)



4 ineerin

n

5

G

d
b
m
c
i

G

m
d
o
c
o

t
t

5

|

w

A

B

C

C
˛

�

©

©

�

a

�

5

b

z
a
t

e

M

o

q

a




a




l

ˇ

a

20 D.N. Gruel et al. / Chemical Eng

Finally:

li
≥ max

j ∈ N
(
z=0(Dgij(s)) − 
z=0(Ngij(s))) − �zi

(4.43)

. Application

Let G0 be the 2 × 2 transfer matrix:

0=

⎡
⎢⎣

−0.5332

(32s+1)2(2s+1)
e−7.5s 1.68

(28s+1)2(2s+1)
e−2s

−1.2585
(43.6s+1)(9s+1)

e−2.8s 4.7861
(48s+1)(5s+1)

e−1.15s

⎤
⎥⎦ . (5.1)

A modified Alatiqi distillation column plant [18]. Some control
esign and process identification was applied to this process. Luy-
en in [18] proposed the so-called biggest log modulus tuning (BLT)
ethod, Tavakoli in [19] proposed a decentralised PI controller to

ontrol the distillation column. In [20], Wang et al. proposed an
dentification process that leads to the following model:

0 =

⎡
⎢⎣

−0.5332
67.7099s + 1

e−19.5838s 1.7171
48.3651s + 1

e−14.8791s

−1.2585
48.7805s + 1

e−8.4505s 4.7861
49.7512s + 1

e−4.9768s

⎤
⎥⎦ . (5.2)

Plant (5.2) studied by Wang et al. in [20,21] illustrate the
ethod proposed in this paper. In [22], Tao proposes an analytical

ecoupling control method based on the H2 optimal performance
bjective of internal model control (IMC) theory. This method is
ompared to the proposed CRONE methodology. The CRONE meth-
ds provided better robust stability.

The control objectives are control the system and demonstrate
he control system robust stability of the method, time-delays and
ime-constant uncertainties are ±20% of nominal values.

.1. Determination of time-delay

With no approximation the determinant of G0(s) is

G0| = Ae−24.5606s + Be−23.3296s

C
, (5.3)

here

= −2.5519(48.7805s + 1)(48.3651s + 1), (5.4)

= 2.1610(67.7099s + 1)(49.7512s + 1), (5.5)

=(67.7099s+1)(49.7512s+1)(48.7805s+1)(48.3651s+1). (5.6)

onsequently, the time-delay of the determinant of G0(s) is
0 = 23.3296 and:

(|G0|) = 23.3296. (5.7)

For the first loop:

�(G11
0 ) = 4.9768, (5.8)

�(G21
0 ) = 8.4505, (5.9)

also

�1 = min(�(G11
0 ), �(G21

0 )) = 4.9768, (5.10)

and with Eq. (4.11):

�(ˇ01 ) ≥ 23.3296 − 4.9768 = 18.3528. (5.11)
For the second loop:

�(G12
0 ) = 14.8791, (5.12)

�(G22
0 ) = 19.5838. (5.13)

ˇ

w
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Consequently:

1 = min(�(G12
0 ), �(G22

0 )) = 14.8791, (5.14)

nd by relation (4.11):

(ˇ02 ) ≥ 23.3296 − 14.8791 = 8.4505. (5.15)

.2. Determination of the positive real part zeros and poles

First to determine the various poles or zeros of G−1
0 that must

e appear on each nominal open-loop transfer function ˇ0i
(s), the

eros and poles of and must be calculated. The Padé
pproximation is used. The first order Padé approximation of a Lij
ime-delay is

−Lijs = 1 − (Lij/2)s
1 + (Lij/2)s

. (5.16)

For all time-delays the approximation has been calculated. A
atlab function shows that the dominant zero of the determinant

f is z = 0.0129:

(5.17)

The plant has no zeros and poles in the right half-plane. Conse-
uently:

(5.18)

Also:

(5.19)

nd

(5.20)

Finally by Eq. (4.24):

z((ˇ0i
)01

)|z=0.0129 = 1 − 0 ≥ 1, (5.21)

nd

z((ˇ0i
)02

)|z=0.0129 = 1 − 0 ≥ 1. (5.22)

Consequently, the two transfer functions of the nominal open-
oop transfer function matrix contain a RHP zero at z = 0.0129.

Finally:

01 = Cz1 ˇl1 (s)(s − z1)
n1

d1
e−18.3528sˇh1

(s), (5.23)

nd
02 = Cz2 ˇl2 (s)(s − z2)
n2

d2
e−8.4505sˇh2

(s), (5.24)

here z1 = z2 = 0.0129.
Then n1, d1, n2, d2, Cz1 and Cz2 are optimized.
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Fig. 3. (–) Nominal and (–) reparametered freque

.3. Specifications and optimization results

.3.1. Specifications
For all the possible parametric states, the control must satisfy
he following performance specification:

a zero steady-state error for the two outputs,
a perfect decoupling for the two loops,

o
f
t
b
l

Fig. 4. (–) Nominal and (–) reparametered fra
sponses of fractional complementary sensitivity.

a smaller as possible settling time,
a first overshoot less than 10%.

Eq. (4.43) and first specification imposes nl ≥ 1. The sec-

nd specification imposes finite gain to be smaller as possible,
or the non-diagonal transfer function of the complemen-
ary sensitivity function. The last specification will be satisfied
y a nominal resonant peak equal to 10−3 for the two
oops.

ctional open-loop frequency responses.
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tional

-
-
-

Fig. 5. (–) Nominal and (–) reparametered ra

The inputs of the CRONE control optimization software are:
the various RHP zeros and unstable poles of ˇ0i
(s),

the time-delay for each control loop,
an initialisation of the various elements of the non-integer open-
loop transfer function: ωr, ωh, ωl, ||ˇ0i

(jω)||ω=ωr , nl and nh.

-
-
-
-

Fig. 6. (–) Nominal and (–) reparametered complementary sensitivity fu
open-loops using the first controller design.

For the first loop, the initial values are:
ωr = 0.0042 rad/s,
ωh = 0.4 rad/s,
ωl = 0.002 rad/s,
||ˇ01 (jω)||ω=ωr = 0 dB,

nctions for the rational controller using the first controller design.
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Fig. 7. (–) Nominal and (–) reparametered complementary sensitivit

nl = 1,
nh = 2 for the controller be proper (4.37).

And for the second loop, the initial values are:
ωr = 0.0041 rad/s,
ωh = 0.4 rad/s,
ωb = 0.01 rad/s,∥∥ˇ02 (jω)

∥∥
ω=ωr

= 0.5 dB,

m

ˇ

Fig. 8. (–) Nominal and (–) reparametered rational open-loop
tions for the rational controller using the second controller design.

nl = 1,
nh = 2 for the controller to be proper (4.37).

Consequently, the open-loop transfer function matrix to opti-

ize is

0(s) =
[

ˇ01 (s) 0
0 ˇ02 (s)

]
. (5.25)

transfer functions using the second controller design.
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ˇ

ˇ

a

Fig. 9. Nominal response (l

n which:

ˇ01 (s) = ˇl1 (s)ˇ01 (s)ˇh1
(s), (5.26)

(s) = (s − 0.0129)Csign(b)

(
1 + s/0.4

)a1
01 11 1 + s/0.002

×
(

�e/i

{(
Cg1

1 + s/0.4
1 + s/0.002

)ib1
})−q1sign(b1)

e−18.3528s,

(5.27)

ˇ

−

Fig. 10. Perturbed system response (le
tputs, right control signal).

l1 (s) = Cl1

(
0.002

s
+ 1

)
, (5.28)

nd
h1
(s) = Ch1

((s/0.4) + 1)2
. (5.29)

ˇ02 (s) = ˇl2 (s)ˇ02 (s)ˇh2
(s), (5.30)

ft outputs, right control signal).
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to a u

ˇ

ˇ
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ˇ

Fig. 11. First output response

02 (s) = (s − 0.0129)Csign(b)
22

(
1 + s/0.4

1 + s/0.01

)a2

×
(

�e/i

{(
Cg2

1 + s/0.4
1 + s/0.01

)ib2
})−q2sign(b2)

e−8.4505s,
(5.31)

l2 (s) = Cl2

(
0.01

s
+ 1

)
, (5.32)

K

5

t

Fig. 12. Second output response to
nit step in the second input.

nd

h2
(s) = Ch2

((s/0.4) + 1)2
. (5.33)

Optimization is infact consist in finding the optimal value for
sign(b)
i(Ki = C
ii

Chi
Cli

), ai, bi, qi and Ci.

.3.2. Results
Taking into account all the specifications, the optimal values for

he various parameters are:

a unit step in the first input.
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Table 1
Controller transfer matrix coefficients.

k11 k12

ai bi ai bi

1 1.570 0 1.570 0
2 0.748 0.522 0.835 0.458
3 0.042 0.167 0.835 0.271
4 0.021 0.095 0.498 0.167
5 0.020 0.023 0.020 0.118
6 0.015 0.021 0.020 0.032
7 0.015 0.021

k21 k22

ai bi ai bi

1 1.570 0 1.570 0
2 0.748 0.522 0.835 0.458
3 0.042 0.167 0.835 0.271
4
5
6
7
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for the first loop: K1 = 2.0160, a1 = 1.1087, b1 = −0.3710, q1 = 2 and
C1 = 2.3258.
for the second loop: K2 = 0.4122, a2 = 1.3668, b2 = −0.6808, q2 = 4
and C2 = 1.0807.

For the ideal fractional open-loop, all specifications have now
een verified. In fact Fig. 3 shows that magnitudes, for all diagonal
lements (nominal or reparametered) are around zero. However,
or non-diagonal elements there is a distinction between nomi-
al and reparametered elements. The magnitude for the nominal
lant is smaller (around −300 dB) but for the reparametered
lants it is around −25 dB. Also Fig. 4 shows that the frequency
esponses of the ideal fractional open-loop overlap the 0 dB
-contour.

.4. The controller

First, for find the controller frequency response, frequency-
omain and K = G−1

0 ˇ0 are used. To the frequency response of the
ractional controller, poles and zeros are used to synthesize a ratio-
al controller.

The expression of the controller is

0kij(s) = Gji
0(s)

|G0(s)|ˇ0i
(s) ∀i, j ∈ N, (5.34)

nd the expression of the inverse of the determinant is

1
|G| = C

Ae−24.5606s + Be−23.3296s
. (5.35)

To synthesize the rational controller two methods can be used.

.4.1. Controller design: first method
This first method consists in not used a priori known elements of

he transfer G−1
0 when frequency-domain system identification is

sed to find the rational controller. The parameters of the reduced-
rder transfer function with a predefined structure are tuned to fit
he fractional frequency response of the ideal controller. The ratio-
al integer model on which the reduced-order transfer function is
ased, is given by

ij(s) = A(s)
B(s)

. (5.36)

here A(s) and B(s) are polynomials of specified integer degrees
a and nb. An advantage of this design method is that whatever
he complexity of the control problem, around six satisfactory
alues of na and nb are easily found. In our case this simplicity
s detrimental to performance. This controller synthesis method
ives non-optimal results. Even if the equivalent open-loop over-
aps the 0 dB M-contour (Fig. 6), the second specification is not
espected. When comparing the ideal closed-loop (Fig. 3) and the
ational closed-loop (Fig. 5) a perfect decoupling for two loops is
ot achieved. In fact the non-diagonal elements show, for the nom-

nal plant, a maximum attenuation of 20 dB for the first loop and
round 10 dB for the second.

.4.2. Controller design: second method
In the second design an a priori known is used when the final

nd rational controller is searched. In this case many known ele-
ents are introduced in the initial and predefined structure of the

ransfer functions. In (5.33) and (5.34), it can be seen that the Gji
0C
lements for each element of K are not necessary for approxima-
ion.

In our case this method gives optimal results. The ideal fractional
losed-loop (Fig. 3) or open-loop (Fig. 4) is match with the rational
losed-loop (Fig. 7) or open-loop (Fig. 8).
0.021 0.095 0.498 0.167
0.020 0.023 0.021 0.118
0.015 0.021 0.020 0.032

0.020 0.021

The second design gives the best results. Each element of the
ontroller transfer matrix is based on the model defined by (5.35)
Table 1).

.5. Assessment of the controller

A simulation is now carried out to assess the controller.
Step signals are applied, respectively, at reference inputs at t = 0 s

nd t = 1500 s, and at input disturbances at t = 4000 s and t = 2500 s.
heir magnitudes are, respectively, 1 and 0.1. Fig. 9 presents the
ominal plant inputs and outputs. Fig. 10 presents the perturbed
nd nominal plant inputs and outputs. As the outputs always fol-
ow the reference inputs without poor damping (robust stability
egree), the controller can be said robust. It is also efficient as

t always rejects the disturbance effect. Fig. 11 and 12 show that
he controller designed using the CRONE approach (black line) is

ore decoupling than the controller designed using T. Liu approach
dotted line).

. Conclusion

The CRONE methodology has been extended to unstable mul-
ivariable plant with RHP zeros and multiple time-delays. To treat
his kind of plant some elements of G0 or its inverse must be intro-
uced in each open-loop, this article gives a whole method to find

t.
A chemical engineering process is used to improve the proposed

pproach. The extended CRONE control approach has been used to
esign a controller to ensure robust closed-loop stability degree,
ecoupling and disturbances rejections. The simulation exerted
how that CRONE control approach successfully states the robust
tability of the closed-loops, the robust decoupling and the robust
isturbances rejection.

A crone approach to unstable and non-square multivariable
lants with multivariable time-delay, and RHP zeros, is being inves-
igated.
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